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ABSTRACT

This paper examines the influences ofsituational and
mnodelfactors upon the accuracy ofBayesian leaming
systems. In particular, it is concemed with the impact
of variations in training sample size, number of
attibutes, choice of Bayesian model, and criteria for
excluding model attributes upon the overall accuracy
of the simple and proper Bayes models.

INTRODUCTION

"Conditional independence means that the
presence of one clue does not change the value of
any other clue."[1] During the past two decades,
there has been considerable discussion regarding the
importance of the conditional independence
assumption in Bayesian analysis. One group of
researchers has stated that the problems
encountered in managing conditional
nonindependence have been an impediment to the
acceptance of Bayesian analysis by the medical and
other potentially interested communities.[2, 3, 4, 5]
In contrast, other researchers have asserted that the
simple Bayesian model is relatively robust and that
the management of conditional nonindependence is
not an important problem.[6, 7] This study
reviewed factors which have been assumed to
influence the importance of the conditional
independence assumption in Bayesian analysis. It
also identified situations in which Bayesian models
that assume conditional independence and
conditional nonindependence in their data are
respectively most appropriate.

BAYESIAN TERMINOLOGY

Bayesian analysis is often concerned with
predicting whether one of two mutually exclusive
and collectively exhaustive events will occur. The
probability of such events occurring, without
considering the presence of additional data, is called
the prior probability. The probability of such events
occurring, given the presence of additional data, is

called the posterior probability. Bayes first
suggested a formula for computing the posterior
odds of an event.[81 This formula is given below.

Posterior Odds ofH =
[p(Dl,D?...Dn IHP)/p(Dl,D2?.-.,Dn IHO)J*-7P(HP(Iro)I -

(1)

Formula (1) states that the posterior odds
of event H are equal to the product of two terms.
The first term is the likelihood ratios for each
attribute in the set of additional data which are used
to predict event H. The second term is the prior
odds of event H before the effect of the additional
set of data is considered. The individual likelihood
ratios in formula (1) can be expanded as shown
below. In this formula, the data are assumed to be
conditionally independent.

p(DpD...Dn IHP)/p(DplD2?...,Dn IHO) = (2)
[P(D1 IHi)7P(DlTHJI*[p(U2 lRP)/p(D2THo)J*... *

[P-(DnIH;)/p(DIn 17o)7
Formula (2) above for computing likelihood

ratios assumes that the individual attributes in the
data set are conditionally independent. If this
assumption is not valid and the attributes are
interdependent, this formula must be modified to
account for the joint likelihood ratios in the set of
attributes. This revised formula is:

p(Dl,D2p...,Dnl Hl)/p(D,D2....,Dn IH0) = (3)
[P-[p(D1 IH1)/P(D1 H&JOY

[P(D2 IHI)1P7p(D2 [H1,D1)J*)
[P(Dn IHlpD1)D --.. Dn-1)1p(n 1711),,De2p ...Dn-1)]
Each term in this formula is conditioned on the
values for all previous terms. Only the first term is
in its conditionally independent form. All other
terms are in their conditionally nonindependent
forms. Formulas (2) and (3) above are the primary
Bayesian models which have been used in previous
studies. We will call formula (2) the simple Bayes
model and formula (3) the proper Bayes model.
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SITUATIONAL FACTORS

Situational factors influence the relative
efficacy of the simple and proper Bayes models.
These factors and their interactions are often
assumed to determine which of the Bayes models
will have the greatest accuracy.

(1) Conditional Nonindependence:
The existence of conditional

nonindependence in training data sets has a direct
bearing upon the choice between the simple and
proper Bayes models. If data are conditionally
independent, there are no joint likelihood ratios and
formula (2) can used for computations. With
formula (2), each attribute's likelihood ratio is
computed from the entire training sample. In
contrast, when data are conditionally
nonindependent, joint likelihood ratios exist and
formula (3) should be used to calculate the
conditional likelihood ratios. These conditional
likelihood ratios are computed by successively
reducing the trainig sample to account for
dependencies with attributes which were previously
included in the model.

(2) Training Sample Size:
Training sample size is generally considered

to be a primary determinant of accuracy in both the
simple and the proper Bayes models. Chard
generated conditionally independent training
samples containing seven attributes and eight
outcomes.[9] The prior probabilities for this sample
ranged from 2% to 30%. Chard concluded that a
minimum of 200 cases are required for the simple
Bayes model and that there was a maximum of
approximately 500 cases above which increasing the
training sample size would produce no further
improvement in the model's accuracy.

Studies similar to Chard's have not been
published using conditionally nonindependent
training samples. However, Gammerman and
Thatcher, in a study with nine outcomes and thirty
three attributes, reported that a database containing
4,387 patients was not large enough to permit all
relevant combinations of symptoms to be identified
in adequate detail so that the proper Bayes model
would outperform the simple Bayes model.[10J

(3) Number of Attributes:
Several researchers have reported small

differences in accuracy between the different Bayes
models with small attribute sets and larger
differences in accuracy with larger attribute sets.[4,

9, 10] This led Fryback to question the value of
using the proper Bayes model when there was a
small attribute set. He hypothesized that with a
small attribute set, the contribution of each attribute
is stronger than the degradation in performance
which results from errors caused by ignoring the
dependencies between attributes. Thus, the proper
Bayes model is only preferred when there is a large
attribute set.

MODEL FACTORS

Model factors influence the relative
accuracy of the simple and proper Bayes models
through their management of a model's data. The
presence or absence of model factors can either
enhance or diminish the relative performance of
Bayes models.

(1) Attribute Order
Fryback demonstrated the importance of

considering the sequence in which attributes are
selected from a conditionally nonindependent
training sample for inclusion in proper Bayes
models.[4] Common measures of expected attribute
impact upon model accuracy which have been used
to order model attributes include: information gain,
error reduction, and relative informativeness.[11, 12,
13] Attribute order has no significance in the
simple Bayes model where there is no reduction in
the data set during computations. However, it may
have significance in the proper Bayes model if data
set reductions prevent attributes from being
included in the final model.

(2) Attribute Exclusion:
Ohmann, et. al. reported that none of the

conditionally nonindependent models they tested
achieved maximum accuracy when all attributes
were included.[14] This led them to conclude that
better results could be obtained if adequate
strategies were used for the selection of attributes.

Ohmann, et. al. identified peaking as a
problem for models such as logistic regression and
discriminant analysis which partition their training
samples and automatically include all attributes. By
implication, peaking would be a problem for the
proper Bayes model if all attributes were included.
In contrast, Ohmann, et. al. also reported that
monotonicity could be demonstrated in a simple
Bayes model with many attributes and they
concluded that it may be preferable to use all
attributes in simple Bayes models which do not
partition the training sample during computations.
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(3) Exclusion Criteria:
Both chi-square and sample theory tests

have been used in machine learning systems as
measurements for attribute exclusion.[12, 15, 16]
However, as Fisher first noted, the real issue may
not be the measurement that is used, but rather the
confidence level which is chosen for excluding
attributes.[171

Fisher observed a pessimistic bias in
machine learning systems that reject an attribute
which can not be proven to significantly influence
accuracy. He states that pessimistic biases arise
because criteria which are important in hypothesis
testing are naively translated into criteria which are
used for evaluating 'hypothesis plausibility' in
learning systems. In contrast to the pessimistic bias,
Fisher proposes an optimistic bias. This bias states
that an attribute is deemed relevant unless it is
demonstrably noninfluential to system accuracy. His
research indicates that the choice between optimistic
and pessimistic biases in machine learning systems
depends upon three factors.

Training Sample Size: Fisher's findings
show that optimism, a low confidence level for
excluding attributes, is preferable when there is a
smaller training sample. After the training sample
reaches sufficient size, there is little difference in
performance across confidence levels.

Training Signal Noise: Noise is variance in
the training data that cannot be modeled by the
learning algorithm. Fisher's research shows that
optimism achieves better results in training samples
with low noise.

Outcomes Distribution: An uneven
distribution of prior probabilities creates a pre-
existing bias in favor of one of the outcomes. In a
training sample where cases were evenly distributed
across two outcomes, Fisher found that a pessimistic
bias was detrimental to performance, particularly
with a small training sample. Conversely, in a
training sample where 91% of the observations were
in one category, he found that the choice of
confidence level had little effect on the outcome.

STUDY METHODOLOGY

This study investigated the impact of
variations in training sample size, number of
attributes and attribute exclusion criteria upon the
accuracy of the simple and proper Bayes models. It
was organized as a controlled experiment in which
these attributes were manipulated while the
remaining situational and model factors described
above were controlled. The average area under

ROC curves was used to evaluate the discriminatory
ability of the models.

Myocardial Infarction Data Base:
All data used in this study were collected

under a grant from the Health Care Finance
Administration.[18] Sixteen questions in that data
base correspond to the factors which are used in the
APACHE II system to predict patient outcomes.
These sixteen questions were used as the attributes
in our models. Another question in that data base
describes the patients' discharge status (coded as
dead or alive). This question was used as the
outcome which the models in this study
predicted.[19] The myocardial infarction data base
contained 1139 cases which met the APACHE II
inclusion criteria.

Training and Test Samples:
Previous studies have compared the

performance of different inductive learning
systems.[17, 20, 21] The performance criteria most
frequently chosen is a system's ability to accurately
classify cases which it has not previously seen. In
our experiment, the test samples were fixed at a size
of 339 cases while their associated training samples
were selected in sizes of 100, 400, and 800 cases.
These training sample sizes were chosen because
they were respectively below, within, and above the
200 to 500 case training sample range which Chard
used to measure the simple Bayes model's
performance.

Number of Attributes:
Separate from our selection of training

samples, we also selected attribute sets. Using a
randomization procedure, we selected sets of 4, 8,
and 12 attributes from the 16 attributes in the
APACHE II data set. These groupings were chosen
because they were respectively below, near, and
above the seven attributes which were used in
Chard's study. We repeated this procedure 30 times
for each attribute set size and created a total of 90
different attribute sets for use in this study. Next,
we randomly assigned the attribute sets to the
previously created training and test samples. This
created 10 occurrences for each of the nine training
sample size and attribute set size combinations.

B.E.St. Models:
In a previous study, we developed a system

which selects its attributes according to their
information value and is able to model zero through
n-1 orders of conditional nonindependence in Bayes
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models.[l2] This system also may optionally use
sample theory as a means of excluding attributes
from a Bayes model. This exclusion is effected by
using the binomial distribution to test whether an
attribute's likelihood ratio is statistically different
from unity. If it is not statistically different from
one, the attribute is excluded. Kramer and
Thieman provide tables which contain the number
of training sample cases that are required to detect
these differences for a particular likelihood ratio
value.[22]

Outcome Prediction:
We used B.E.St to calculate test sample

probabilities of patient survival under four scenarios
(simple Bayes with optimistic exclusion, simple
Bayes with pessimistic exclusion, proper Bayes with
optimistic exclusion, and proper Bayes with
pessimistic exclusion) for each of the 90 sample-
attribute set combinations. Using the probabilities
of patient survival, we computed areas under the
ROC curve for each of the 360 resulting test
samples.[23, 241 These ROC curve areas were then
averaged for each of the 36 distinct combinations of
training sample size (100, 400, and 800 cases),
number of model attributes (4, 8, and 12 attributes),
Bayes model (simple or proper Bayes), and
attribute exclusion criteria (sample theory or no
exclusion).

STUDY RESULTS

Table 1 below shows the main and
interaction effects that were identified in our
experimental design. Higher order interaction
effects, although tested, are excluded from the table
as they were not significant. The overall F test
value of 0.0001, indicates that the experimental
design accounts for a significant amount of the
variability in average ROC area. The R-Square
value of 57.586% substantiates this finding.

Main Effects:
All four main effects attributes in Table 1

have F tests which are significant at the 0.0001 level.
This indicates that the average ROC areas for
different values of these attributes are not equal.

Paired Interaction Effects:
Only two interaction effects in our design

were significant at or below the .05 level. These
were training sample size with exclusion criteria and
number of attributes with Bayes model. Two
additional pairwise interactions that are cited in the

literature (training sample size with Bayes model
and number of attributes with exclusion criteria)
were not significant. Table 2 shows these
relationships.

The training sample size with exclusion
criteria interaction in Table 2 shows that under
optimistic exclusion (no attributes excluded) there
is little change in average ROC area (less than 1%)
as the number of cases increases from 100 to 800.
However, there is a significant change in average
ROC area (over 9%) as the number of cases
increases under pessimistic exclusion (sample theory
is used to exclude attributes).

T tests with an alpha of .05 were used to
compare average areas under ROC curves. The
results show that with a small or an intermediate
number of cases (100 or 400), optimism is preferred
to pessimism and with a large number of cases
(800), there is no difference in accuracy between the
optimistic and pessimistic exclusion criteria.
Further, under optimistic exclusion, there is no
difference in accuracy between small, intermediate,
and large training samples.

With regard to the second significant
interaction effect, number of attributes with Bayes
model, the simple and the proper Bayes models
both increased their accuracy as the number of
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Table 1:
ANOVA FOR AVERAGE ROC AREA

Pr > F - 0.0001
R-Square - 0.575860

Main Effects Pr > F

Training Sample Size 0.0001
Number of Attributes 0.0001
Bayes Model 0.0001
Exclusion Criteria 0.0001

Interaction Effects Pr > F

Training Sample Size 0.1476
with Number of Attributes

Training Sample Size 0.3866
with Bayes Model

Training Sample Size 0.0001
with Exclusion Criteria

Number of Attributes 0.0073
with Bayes Model

Number of Attributes 0.6408
with Exclusion Criteria

Bayes Model 0.6617
with Exclusion Criteria



attributes increased. However, the simple Bayes
model increases its accuracy at a greater rate than
the proper Bayes model. At 4 attributes, there is
no difference between the models, but at 12
attributes simple Bayes is over 4% more accurate
than proper Bayes. Thus, with a small number of
attributes (4), there is no significant difference in
accuracy between the two Bayes models and with a

moderate to large number of attributes (8 or 12),
the simple Bayes model is preferred.

The two interaction which were are cited in
the literature but which were not significant in our

study are both special cases. First, optimism is
significantly more accurate than pessimism at all
attribute levels. Second, simple Bayes is more
accurate than proper Bayes with small and large
sample sizes. With an intermediate sample size,
there is no significant difference in accuracy.

Complex Interaction Effects:
It is often assumed that proper Bayes will

outperform simple Bayes when there is a large
sample size and a large number of attributes. This
interaction was not significant in our design. Simple
Bayes was significantly more accurate than proper
Bayes with 12 attributes and 100 or 800 cases. In
all other situations there was no difference between
the two Bayes models.

With regard to exclusion criteria, optimism
was more accurate than pessimism with a small or
intermediate sized sample, regardless of the number
of attributes. With a large sample, there was no
difference in accuracy.

DISCUSSION

Situational Factors:
Prior research has proposed that when

conditional nonindependence exists, increasing the
training sample size will have a greater impact on
the accuracy of the proper Bayes model than on the
simple Bayes model. Other researcher have
proposed that with large training sample sizes,
proper Bayes will produce more accurate results
than simple Bayes. Our results confirm that proper
Bayes became more accurate as the training
samples increased in size. However, proper Bayes's
accuracy never exceeded that of simple Bayes.

The fact that our simple Bayes models did
not become more accurate as more cases were
added to the training sample seems to conflict with
the results of Chard.[91 This earlier study
concluded that a minimum of 200 cases are required
for the simple Bayes model and that there was a
maximum of approximately 500 cases above which
increasing the training sample size would produce
no further improvement in the model's accuracy. In
contrast, our model achieved a point of maximum
accuracy at or below 100 training cases. Despite the
seeming contradiction, there are important
differences between Chard's study and ours. Chard
was concerned with estimating eight outcomes from
seven attributes. The prior probabilities for his
outcomes ranged from 2% to 30%. Our study
estimated one outcome from 4, 8, and 12 attributes
and our prior probability was 85%. Thus, with a

larger prior probability, we could be expected to
achieve more accurate results with a smaller sample.

Several researchers have reported smaller
differences in accuracy between the simple and
proper Bayes models with a small number of
attributes and larger differences in accuracy with
larger attribute sets.[4, 14] Our study found that
with a small number of attributes, there was little
difference between the performance of simple and
proper Bayes. However, as more attributes were

added, it was the simple, rather than the proper,
Bayes model that had the greatest improvement in
accuracy.

Manipulating the number of attributes in a

simple Bayes model appears to have a far greater
impact on model accuracy than is achieved by

489

Table 2:
AVERAGE INTERACTION ROC AREAS

Exclusion Criterion
Situation
Factors Optimism Pessimism

100 Cases 0.73377 0.63620
400 Cases 0.74238 0.70041
800 Cases 0.74152 0.72832

4 Attribs 0.68934 0.63104
8 Attribs 0.74805 0.70114

12 Attribs 0.78039 0.73275

Bayes Model
Situation
Factors Simple Proper

100 Cases 0.70027 0.66982
400 Cases 0.72801 0.71477
800 Cases 0.74894 0.72090

4 Attribs 0.66125 0.65913
8 Attribs 0.73702 0.71218

12 Attribs 0.77895 0.73418



increasing the training sample size. In fact, it may
be more economical in many studies to increase a
simple Bayes model's accuracy by increasing the
number of attributes that are collected rather than
by increasing the training sample size. Again, this
relationship should be investigated further.

Model Factors:
Fisher observed that an optimistic bias is

preferred when there is a small training sample and
that neither bias is preferred with a large training
sample. Our results support this observation. With
a small or intermediate number of cases (100 or
400), optimistic exclusion produced more accurate
estimates. With a larger number of cases (800),
there was no significant difference in predictions
with either pessimistic or optimistic exclusion. We
extended Fisher's work by varying the number of
attributes in our models. We found that optimistic
exclusion consistently outperformed pessimistic
exclusion for all attribute sets (small, intermediate,
and large).

When we reviewed the complex interaction
between training sample size, number of attributes,
and exclusion criteria, we found that optimism is
only preferred to pessimism when there is a small
or intermediary number of cases (The number of
attributes did not matter.). With a large training
sample size, there is no difference in performance
between optimism and pessimism.

Summary:
Our results tend to support the position

that managing conditional nonindependence is not
as important a problem as some researchers have
assumed and that the simple Bayes model is fully
capable of managing conditional dependencies. In
our study, simple Bayes consistently outperformed
proper Bayes and even proved better in the one
situation (large training sample and large number of
attributes) where proper Bayes was assumed to
excel.

While this study did not discover those
situational factors which allowed proper Bayes to
outperform simple Bayes, it did eliminate several
candidates (sample size, number of attributes, and
exclusion criteria). This study also demonstrated
that increasing sample size and/or the number of
attributes, as has been previously suggested, might
not be the best way of handling problems of this
type. Instead, other approaches should be
investigated which would better manage the data
which are available. Perhaps, by selecting attributes
for models according to their importance for the

particular test case under evaluation instead of their
importance in the entire training sample, the
accuracy of proper Bayes models could be
improved.
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